Search results for "Galaxies: luminosity function"

showing 2 items of 2 documents

High redshift galaxies in the ALHAMBRA survey. II. Strengthening the evidence of bright-end excess in UV luminosity functions at 2.5 <= z<= 4.5 by PD…

2018

Context. Knowing the exact shape of the ultraviolet (UV) luminosity function (LF) of high-redshift galaxies is important to understand the star formation history of the early Universe. However, the uncertainties, especially at the faint and bright ends of the LFs, remain significant. Aims. In this paper, we study the UV LF of redshift z = 2:5 4.5 galaxies in 2.38 deg of ALHAMBRA data with I ≤ 24. Thanks to the large area covered by ALHAMBRA, we particularly constrain the bright end of the LF. We also calculate the cosmic variance and the corresponding bias values for our sample and derive their host dark matter halo masses. Methods.We have used a novel methodology based on redshift and magn…

Astrophysics::High Energy Astrophysical PhenomenaContext (language use)AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesLuminosityhigh-redshift [Galaxies]galaxies: high-redshift0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsLuminosity function (astronomy)Physics[PHYS]Physics [physics]010308 nuclear & particles physicsStar formationAstronomy and AstrophysicsCosmic varianceevolution [Galaxies]Astrophysics - Astrophysics of Galaxiesluminosity function [Galaxies]RedshiftGalaxyDark matter halogalaxies: luminosity functionSpace and Planetary Sciencemass functionMass functiongalaxies: evolution[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

The ALHAMBRA survey: B -band luminosity function of quiescent and star-forming galaxies at 0.2 ≤  z  < 1 by PDF analysis

2016

[Aims]: Our goal is to study the evolution of the B-band luminosity function (LF) since z ∼ 1 using ALHAMBRA data. [Methods]: We used the photometric redshift and the I-band selection magnitude probability distribution functions (PDFs) of those ALHAMBRA galaxies with I ≤ 24 mag to compute the posterior LF. We statistically studied quiescent and star-forming galaxies using the template information encoded in the PDFs. The LF covariance matrix in redshift - magnitude - galaxy type space was computed, including the cosmic variance. That was estimated from the intrinsic dispersion of the LF measurements in the 48 ALHAMBRA sub-fields. The uncertainty due to the photometric redshift prior is also…

luminosity function mass function [Galaxies]Galaxies: statisticsAstrophysics::High Energy Astrophysical PhenomenaPopulationAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesLuminositystatistics [Galaxies]0103 physical scienceseducation010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhotometric redshiftLuminosity function (astronomy)Physicseducation.field_of_study010308 nuclear & particles physicsGalaxies: luminosity function mass functionGalaxies: evolutionAstronomy and AstrophysicsCosmic varianceB bandevolution [Galaxies]Astrophysics - Astrophysics of GalaxiesRedshiftGalaxy[PHYS.ASTR.GA]Physics [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA]Space and Planetary ScienceHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astronomy & Astrophysics
researchProduct